Tony Paletta wrote on Sat, Oct 4, 2003 12:13 PM UTC:
(Partial reply to your post. You mentioned several topics.)
I assume you mean a Dabbaba-analog on a hex board, using the Glinski-based
analogy to FIDE chess. Mapping the hex board onto a standard chessboard
(where the 91 Glinski hex board >> diagonal oriented 11x11 chessboard with
15 squares cut from each of the two side corners, for example) helps
clarify the situation: the h-Dabbaba is more strictly equivalent to a true
Dabbaba plus half an Alfil and, since the Alfil adds nothing to the
Dabbaba's possible squares, the net effect is (not so surprisingly) the
same type of boundedness as the true Dabbaba.
One type of 'half-bound' piece on the hex board would be a piece moving
in any single h-Rooks direction (e.g., N-S) and in the perpendicular
h-Bishop direction -- its a FIDE Bishop. A conventional Camel is also
possible, as are any other half-bound pieces mapped from a square-tiled
chessboard.